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H3K9 is a common target of methylation in vivo and can carry one, 
two or three methyl groups. H3K9me2 or H3K9me3 mark transcrip-
tionally silent heterochromatin in most eukaryotes1–3. In mammals, 
insects and Schizosaccharomyces pombe, H3K9 methylation is highly 
enriched at telomeres, pericentric heterochromatin and interspersed 
repetitive elements (REs)4–7.

Ligands that recognize methylated H3K9, such as heterochromatin 
protein 1 (HP1), mediate transcriptional repression of reporter genes 
and chromatin compaction near centromeres2,8. H3K9me is also 
implicated in the silencing of genes both during development9,10 and 
in pathological states. For instance, tumor-suppressor genes have been 
found to be transcriptionally silenced by mistargeted H3K9me in can-
cers11,12, and H3K9me marks triplet repeat sequences, whose expan-
sion has debilitating consequences in syndromes such as Huntington’s 
or Fragile X13,14. Nonetheless, by reducing levels of H3K9me the effi-
ciency of somatic cell reprogramming can be increased15,16.

It has been difficult to study the function of H3K9me-mediated 
repression in complex organisms for several reasons. First, there are 
at least eight documented and partially redundant H3K9 histone 
methyltransferases (HMTs) in mammals (SUV39h1, SUV39h2, G9a, 
SETDB1, SETDB2, PRDM2, PRDM3 and PRDM16 in mice). Second, 
the vast majority of H3K9 methylation is found on extended stretches 
of REs that cannot be accurately mapped by standard deep sequenc-
ing techniques17. In some cases the disruption of individual H3K9me 
HMTs is embryonically lethal, owing in part to compromised mitotic 
chromosome segregation18–20. The loss of SUV39h1, SUv39h2 or their 
homologs also results in mitotic defects, aneuploidy and chromosomal  

rearrangements in mice, flies and fission yeast7,21,22. This may have 
masked phenotypes arising from the loss of H3K9me in transcrip-
tional repression during development.

The holocentric nematode C. elegans has only two, nonredundant 
H3K9me-depositing HMTs, MET-2 and SET-25 (refs. 23,24). Here we 
exploited the finding that mutants lacking both HMTs have no detect-
able H3K9 methylation24, and yet produce viable embryos, to study how 
the loss of this histone modification impacts a multicellular organism.

RESULTS
Loss of H3K9me did not impair embryonic differentiation into 
adult tissues
The HMT MET-2, which catalyzes the mono- and di-methylation 
of H3K9, is the homolog of mammalian SETDB1, also known as 
ESET23. SET-25, on the other hand, shares considerable SET domain 
homology with SUV39h1, SUV39h2 and G9a enzymes, and it is the 
only C. elegans enzyme that trimethylates H3K9 (ref. 24). To con-
firm that met-2 set-25 double mutant worms lack H3K9 methylation 
throughout development, we performed immunofluorescence analy-
sis at all stages of worm development (Fig. 1a). We found no detect-
able H3K9me2 or me3 in met-2 set-25 embryos, second-stage larvae 
(L2) or gonads of adult worms, confirming our earlier mass spec-
troscopic analysis of total histones isolated from mutant embryos or 
larvae24. Histone acetylation and other common methylation marks 
(Supplementary Fig. 1) remained intact24. Despite this complete 
absence of H3K9me, the met-2 set-25 mutant embryos developed 
into viable adults.
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To monitor the kinetics of somatic development, we compared the 
timing of wild-type (N2) and met-2 set-25 organisms as they transi-
tioned from the first larvae stage (L1) to the L1 stage of the next gen-
eration. This is a highly synchronous cycle that takes 3 d in wild-type 
strains grown at 20 °C (Fig. 1b). In contrast to wild-type worms, 52% of 
the met-2 set-25 mutants showed stochastic delays in stage transitions, 
even though most mutant embryos reached adulthood (88% became 
mature adults; Fig. 1b). These delays were more pronounced at 25 °C 
than at 20 °C and were not restricted to one specific stage (Fig. 1b). 
Nonetheless, only 2% of the adult offspring displayed a grossly irregu-
lar morphology at 20 °C, i.e., ‘dumpy’ appearance, partially defective 
cuticles or bursting as adults (Fig. 1c). Such aberrant morphologies 
were below detection level (<0.1%) in wild-type populations25.

Chromosome missegregation has been suggested to be a main cause 
for the phenotypes observed in mutants for H3K9 HMTs in other organ-
isms7,19,26. Using histone H2B fusion to GFP (H2B-GFP), we tracked 
the frequency of mitotic chromosome bridges or lagging chromosomes 
in wild-type and met-2 set-25 embryos. The frequency of defective 
mitoses at either 20 °C or 25 °C was similar in wild-type and mutant 

embryos (Fig. 1d). Moreover, the duration of mitosis was identical, 
which argues against any mutant-specific spindle checkpoint activation 
(Fig. 1d). To monitor meiotic chromosome missegregation, we followed 
H2B-GFP-tagged oocytes undergoing meiosis in gonads. Thanks to the 
chromosome condensation and enlarged nuclei that occur in diakine-
sis, we could determine bivalent chromosome number per cell. Again 
there was no detectable difference between met-2 set-25 and wild-type 
oocytes at either temperature (Fig. 1e). Thus, we excluded aneuploidy 
and spindle checkpoint activation as triggers for the developmental 
delay or aberrant morphologies of H3K9me-deficient worms.

Temperature-dependent sterility of met-2 set-25 mutant
Brood sizes were notably smaller upon propagation of the double 
HMT mutant, and worms became completely sterile after two genera-
tions at 26 °C (Supplementary Fig. 2a). We determined the number of 
viable progeny of met-2 set-25 vs. wild-type worms under controlled 
growth conditions at 15 °C, 20 °C and 25 °C. Although brood size 
was equal between the met-2 set-25 and wild-type worms at 15 °C, 
mutant adults had significantly fewer viable progeny at both 20 °C and 
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Figure 1  Worms lacking H3K9me were viable but showed stochastically delayed development. (a) Immunofluorescence images using H3K9me2- and 
H3K9me3-specific antibodies on wild-type (wt) and met-2 set-25 strains at indicated developmental stages. H3K9me2 and H3K9me3 signals are in 
green, and DAPI in blue. Scale bars, 5 µm. (b) met-2 set-25 mutation provoked stochastic delays in development from L1 larval stage into fertile adults. 
Developmental progress of singled mutant and wt L1 larvae monitored every 24 h for 3 d at 20 °C and 25 °C (N (number of biological replicates) = 3,  
n (number of animals per replica) = 50). (c) Example images of worm morphologies arising in met-2 set-25 cultures and their frequencies (N = 4,  
n = 50). Scale bar, 100 µm. (d,e) H3K9me2/H3K9me3 was not essential for chromosome segregation in C. elegans. Images (d) from time-lapse  
(∆t = 1 min) movies of mitotic cells in embryos expressing H2B-GFP in which mitotic defects were scored (wt, 20 °C n= 34; wt, 25 °C n = 50;  
met-2 set-25, 20 °C n = 45; and met-2 set-25, 25 °C n = 36). Scale bars, 3 µm. Duration of mitosis reflects minutes from the beginning of 
chromosome condensation until completion of telophase. The number of bivalent chromosomes (e) in wt and met-2 set-25 worms expressing H2B-GFP 
counted in oocytes undergoing diakinesis (N = 3; wt, 20 °C n = 57; met-2 set-25, 20 °C n = 51; wt, 25 °C n = 50; and met-2 set-25, 25 °C n = 50). 
Mean and s.d. are shown. Insets, nucleus of an oocyte in diakinesis.
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25 °C (Fig. 2a). A similar temperature-dependent loss of fertility has 
been observed for mutants of the PIWI pathway27,28 (Supplementary 
Fig. 2b), a germline-specific small RNA pathway that helps to silence 
transposable elements29.

Gonad development per se was not impaired in the met-2 set-25 
mutant (Supplementary Fig. 2c). However, by scoring the expres-
sion of the CED-1::GFP phagocytic receptor, which accumulates 
on the plasma membrane of apoptotic cells30, we detected a high 
level of germline apoptosis (Fig. 2b). The level increased when we 
grew worms at 25 °C. In the double mutant an average of 30 cells 
per germ line were positive for CED-1 at 20 °C (wild-type: 10 cells), 
and over 80 cells per germ line at 25 °C (wild-type: 18 cells; Fig. 2b). 
Consistently, RNA sequencing (RNA-seq) of met-2 set-25 gonads 
showed an increase in mRNA from various other apoptosis-specific 
genes31 (Supplementary Fig. 2d).

Although C. elegans germline cells are known to be particularly sensi-
tive to DNA damage, germline apoptosis can have multiple causes32. To 
see whether apoptosis in H3K9me-deficient gonads is caused by DNA 
damage, we deleted the mammalian p53 homolog, CEP-1, and scored 
CED-1::GFP distribution at 20 °C and 25 °C (ref. 33). In the met-2 set-25 
cep-1 triple mutant and in the strain lacking cep-1 alone, we detected only 
background levels of germline apoptosis at both temperatures (Fig. 2b). 
This strongly suggests that the germline apoptosis seen in the absence 
of H3K9me stemmed from DNA damage. The met-2 set-25 cep-1  
triple mutant was synthetic sterile, as expected (Fig. 2c). Of embryos 
laid at 20 °C, hatching rate dropped from above 95% in the met-2 set-25  
mutant to below 80% when coupled with cep-1 (Supplementary  
Fig. 2e). This is likely due to an increase in DNA damage in the mutant, 
because the number of RAD-51 foci per cell, a marker of processed 
breaks, increased significantly (P < 0.001, two-sided Wilcoxon signed 
rank test), as did the number of cells in the mitotic zone of the germ 
line with RAD-51 foci (3.4% in the wild type and 14.6% in the double 
mutant; Supplementary Fig. 2f). This suggests that germline cells incur 
enhanced levels of damage in the absence of H3K9me.

H3K9me2 marks REs, whereas H3K9me3 marks REs and  
silent genes
To understand the link between the loss of H3K9 methylation and the 
observed increase in DNA damage, we first reexamined the sequences 

reported to be bound by histones bearing H3K9me2 and H3K9me3. 
We performed chromatin immunoprecipitation followed by high-
throughput sequencing (ChIP-seq) experiments, not unlike those 
reported by the modENCODE consortium34,35. We found a tenfold 
enrichment of both H3K9me2 and H3K9me3 along the distal arms of 
the five worm autosomes in early embryos (Supplementary Fig. 3a).  
We did not observe this distribution for other repressive marks, such 
as H3K27me3, nor for the active mark, H3K4me3. Chromosome 
arms were similarly enriched for all types of REs (Supplementary 
Fig. 3a36). A detailed analysis of the distribution of H3K9me2 versus 
H3K9me3 in embryos showed that a high proportion of H3K9me2 
was on REs (~34% of all H3K9me2), whereas H3K9me3 was present 
equally on exons and REs (~26% each, Fig. 3a).

Distinct classes of repetitive DNA constitute large fractions of the 
genomes of complex organisms. These include DNA or RNA trans-
posons, which can generate copies of themselves and integrate into the 
genome, as well as simple repeats, such as tandemly arranged micro- 
or minisatellites (Fig. 3b). Unlike transposons, these latter repeats 
lack open reading frames (ORFs) and regulatory sequences. Worm 
genomes contain all classes of REs, although DNA (rather than RNA) 
transposons are the most abundant transposable elements37. Short 
repetitive sequences are not found as megabase blocks of pericentric 
satellite sequence in worms, but as short clusters distributed along the 
chromosome. As a consequence, 87% of the C. elegans REs, or roughly 
~60,000 discrete elements, can be uniquely mapped to individual sites 
of the genome by standard next-generation sequencing.

Plotting the enrichment of H3K9me2 and H3K9me3 on all REs 
in embryos, we found that 24.3% of REs were exclusively enriched 
for H3K9me2, and 18.1% had either both marks or exclusively 
H3K9me3 (Fig. 3c). This revealed that 42.4% of mappable REs were 
enriched for H3K9me, with H3K9me2 and H3K9me3 distributed 
differentially over the three repeat classes. RNA transposons were 
most strongly correlated with H3K9me3 (58.5%, with 5.7% bear-
ing H3K9me2 only); tandem or simple repeats were more likely to 
carry H3K9me2 alone (31.6%), and DNA transposons fell into two 
groups: 25.5% were uniquely dimethylated whereas 17.7% carried 
H3K9me3 (Fig. 3c).

In embryos H3K9me3 was enriched on transcriptionally silent 
genes (12.0%), where it coated entire ORFs of loci (Fig. 3d and 
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Figure 2  DNA-damage-checkpoint-dependent increase of apoptotic cells in the germ line of met-2 set-25 worms. (a) Number of viable progeny of wt 
and met-2 set-25 mutant per worm at 15 °C, 20 °C and 25 °C (N = 3, n = 75). (b) Example image of a gonad and the quantification of the number 
of apoptotic cells in worms expressing the apoptosis marker CED-1::GFP in wt and met-2 set-25 background, with and without CEP-1. Apoptosis rate 
was determined as the number of cells fully engulfed by CED-1::GFP per gonad arm. CED-1 is a phagocytic receptor, which translocates to the plasma 
membrane during apoptosis. Asterisks indicate gonad tip and boxes mark enlarged section in the overview image (N = 3, n = 75). Scale bar, 10 µm.  
(c) Number of viable progeny per worm of wt and met-2 set-25 with or without CEP-1. At both 20 °C and 25 °C (N = 3, n = 75) cep-1 and met-2 set-25 
showed a synthetic loss of viable progeny. Boxplots show median, boxes 50% and whiskers 90% of the group. Two-sided Wilcoxon signed-rank test: n.s. 
indicates not significant, **P < 0.005, ***P < 0.0001 and ****P < 0.00005.
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Supplementary Fig. 3b), and it was depleted from active genes  
(1.8%; Fig. 3d). Among the H3K9me3-bound genes were many that 
were expressed only in terminally differentiated tissues and a large 
fraction of pseudogenes (Fig. 3d and Supplementary Fig. 3c–e).

Loss of H3K9me led to the derepression of genes and REs
To determine whether loss of H3K9me affects transcription, we 
performed RNA-seq on RNA isolated from either gonads or early 
embryos of wild-type and met-2 set-25 strains, grown at either 20 °C 

or 25 °C. In embryos cultured at 20 °C, we observed the reproducible  
derepression (>2-fold compared to wild-type) of 308 genes. Of these 
72.2% (234) were marked by H3K9me in wild-type cells, and are 
therefore likely to be regulated directly by MET-2 and/or SET-25 
(Fig. 4a and Supplementary Fig. 4a). This set of derepressed genes 
was only a subset (~9.7%) of all genes bearing H3K9me, arguing that 
the loss of H3K9me is not always sufficient to activate transcription. 
Derepression of genes was also temperature-sensitive, with 2.2-fold 
more genes being upregulated at 25 °C, including 83.8% of those 
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Figure 3  Differential enrichment of H3K9me2 and H3K9me3 on repeat element classes and gene types. (a) Percentage of H3K9me2 and H3K9me3 
domains covering promoters, exons, introns, unique intergenic sequences or REs (N = 2). H3K9me positive regions were determined from genomic bins 
of sequences recovered after CHIP-seq using H3K9me2- or H3K9me3-specific antibodies with IP/input > 0. (b) Schematic representation of the three 
major repeat classes. DNA transposons encode a single transposase, which catalyzes all the steps of transposition, flanked by two terminal inverted 
repeats (TIRs). RNA transposons are either long terminal repeat (LTR) or non-LTR retrotransposon types. As derivatives of ancient retrovirus infections 
LTR retrotransposons encode gag (structural proteins of the virus core), pol (reverse transcriptase, integrase), pro (protease) and env (envelope).  
Non-LTR transposons encode a reverse transcriptase (RT) and an endonuclease (EN). Retrotransposon flanking regions in both cases supply promoter 
elements. Tandem repeats are short, noncoding sequence stretches that are repeated in a head-to-tail fashion. (c) High-density scatterplots show 
the enrichment of H3K9me2 and H3K9me3 on REs based on CHIP-seq data. IP, immunoprecipitation. RNA transposons were heavily enriched for 
H3K9me3 (58.5%), whereas 31.6% of tandem repeats had only H3K9me2. Lines indicate the quadrants of single-positive, double-positive and  
double-negative elements. (d) High-density scatterplots of the H3K9me2 and H3K9me3 enrichment on genes. Nonexpressed genes and pseudogenes 
were enriched for H3K9me3.
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already derepressed at 20 °C (Fig. 4a,b). Transcription in gonads was 
elevated by the loss of H3K9me (210 genes). The affected genes were 
largely distinct from those derepressed in somatic cells (37.6% over-
lap; Fig. 4a,b), arguing that transcription factor availability is critical 

for transcriptional activity in the absence of repressive chromatin.  
No essential regulators of meiosis were misregulated.

Given that REs were enriched for H3K9me in wild-type worms, 
we next examined expression changes for REs, which we analyzed as 
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Figure 5  met-2 set-25 worms accumulate RNA:DNA hybrids at repeat elements. (a) Quantification of multiple dot blots against RNA:DNA hybrids 
(antibody S9.6, HB-8730, ATCC, n = 3) in genomic DNA isolated from gravid adults of wt, met-2 set-25 and thoc-2 strains grown at 20 °C. 4 µg,  
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subfamilies. We characterized ~84% of all annotated repeats (300 sub-
families), and excluded only very-low-complexity repeat sequences or 
elements with a single annotated occurrence. In met-2 set-25 mutant 
embryos at 20 °C, 20% of the H3K9me-enriched repeat subfamilies 
were derepressed by at least 1.5-fold, and at 25 °C this value increased 
to 37.6% (Fig. 4c and Supplementary Fig. 4b). Gonads isolated from 
double mutant adults showed an increase of transcription in 14.4% 
of all H3K9me repeat subfamilies (Fig. 4c). This lower number of 
derepressed REs may reflect germline-specific redundant silencing 
by the PIWI pathway38,39. Indeed, different REs were upregulated 
in gonads and somatic cells (Fig. 4d and Supplementary Fig. 4c), 
with tandem repeats being distinctly underrepresented in the germ 
line (Fig. 4e). We note that each class of repeats includes REs that 
were not derepressed by loss of H3K9me, which may reflect either 
the existence of other, H3K9me-independent silencing pathways, 
or a requirement for transcription factors that are tissue-specific or 
developmental-stage-specific.

We asked whether the transcriptional landscape of genes surround-
ing a RE might influence its expression upon loss of H3K9me. This 
is particularly relevant for simple tandem repeats, which lack recog-
nizable promoter or enhancer sequences40. To our surprise, ~50% 
of the derepressed tandem repeats were not in the proximity of an 
upregulated gene (data not shown).

H3K9me-deficient worms accumulated R loops
We next examined the relationship between aberrant RE transcrip-
tion and the observed DNA damage. Perturbation of the replication 

fork is a major driver of DNA lesions41, and a substantial obstacle for 
its progression is the transcription machinery, in particular when 
stalled by RNA:DNA hybrids (R loops)42–45. In fission yeast, R loops 
are enriched at repetitive sequences, such as transposons, telomeres 
or the rDNA46, and correlated with genetic instability47,48. We there-
fore checked whether the met-2 set-25 double mutant accumulated 
R loops, using multiple approaches based on an antibody specific for 
RNA:DNA hybrids (S9.6, gift of P. Pasero49).

We detected an accumulation of R loops in met-2 set-25 worms 
that was not detectable in wild-type worm DNA by performing a dot 
blot analysis of genomic DNA. We also detected significant R-loop 
occurrence by immunostaining of mutant, but not wild-type, embryos  
(P < 0.001, Student`s t-test; Fig. 5a–c and Supplementary Fig. 5a).  
The level was roughly similar to that scored in a mutant strain deficient 
for the Tho-Trex complex (thoc-2), in which RNA:DNA hybrids accu-
mulate owing to impaired RNA processing and export (Fig. 5a)50,51.  
To test for antibody specificity, we treated the isolated DNA with 
RNase H before blotting, to specifically degrade RNA:DNA het-
eroduplexes. Quantification showed that 60% of the signal (met-2 
set-25, loading 4 µg; Fig. 5a) was lost after treatment with RNase 
H. Consistent with the elevated level of RE transcription at higher 
temperatures, the level of R loops increased with temperature, both in 
the dot blot analysis of adult worm DNA, as well as in the immunos-
taining of embryos (Fig. 5c and Supplementary Fig. 5a). The thoc-2 
mutant, on the other hand, reached R-loop saturation even at 15 °C.

To examine formation of R loops in a sequence-dependent manner, 
we immunoprecipitated RNA:DNA hybrids from wild-type or met-2 
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set-25 embryos followed by deep sequencing (DRIP-seq) or qPCR 
(DRIP-qPCR). By qPCR, we found that specific repeat elements that 
were derepressed in the absence of H3K9me, were enriched for R 
loops fourfold to ninefold in mutant over wild-type strains. This was 
not the case for low- or moderate-level transcribed genes (unc-119 
or lmn-1), nor was there a met-2 set-25-dependent increase in DRIP 
for a highly transcribed gene (eef-A.1), although the levels of R loops 
did increase at highly transcribed genes in both wild-type and met-2 
set-25 strains (Fig. 5d). As proof that the antibody was specific for 
RNA:DNA hybrids, we note that the DRIP-qPCR signal was highly 
sensitive to treatment with RNase H (Fig. 5d).

On a genome-wide level (DRIP-seq), we detected the most pro-
nounced enrichment of RNA:DNA hybrids in met-2 set-25 embryos 
on REs that were derepressed in the double mutant (Fig. 5e,f and 
Supplementary Fig. 5e). RNA:DNA hybrids were particularly 
enriched on transcribed DNA transposons and tandem repeats but 
not on RNA transposons (Fig. 5e). Confirming R-loop mapping in 
other organisms, we observed RNA:DNA hybrids more frequently 
on highly transcribed genes, telomeres and the rDNA locus, even 
in wild-type cells (Supplementary Fig. 5b–d)52,53, yet these signals 
showed no further increase in the met-2 set-25 mutant.

This high level of RNA:DNA hybrids suggests the presence of rep-
lication stress in met-2 set-25 worms. To monitor their sensitivity to 
fork stalling, we exposed worms to hydroxyurea, a DNA replication 
inhibitor that reversibly inhibits ribonucleotide reductase, thereby 
depleting deoxynucleotide pools and exacerbating replication fork 
stalling54. L1 larvae exposed to 20 mM hydroxyurea for 16 h and 
allowed to recover for 3 d in absence of the inhibitor, yielded 95 ± 3% 
(mean ± s.d.) viability (resumption of development), whereas only 
43 ± 11% of the met-2 set-25 larvae survived hydroxyurea exposure  
(Fig. 6a). This hypersensitivity was specific to agents causing replica-
tion stress, as treating similarly staged larvae with ionizing radiation 
did not differentially affect wild-type and met-2 set-25 strains (Fig. 6b).  
Thus hydroxyurea hypersensitivity correlated with the accumula-
tion of R loops, and suggests that both the developmental delays and  

sterility detected in H3K9me-deficient worms reflect collisions of 
replication with unscheduled transcription.

In the absence of H3K9me, mutations accumulated in REs
Replication stress and formation of R loops have been correlated 
with both fork instability and double-strand break hotspots in 
yeast44,46,55,56. To determine whether genomes of H3K9me-defi-
cient worms accumulate mutations at elevated rates, we singled 8 
wild-type and 8 met-2 set-25 worms for 12 generations at 25 °C, 
thereby creating 8 individual substrains per genotype. Sequencing of 
the genome of each substrain revealed mutations exclusively in one 
of the 16 genomes (Fig. 6c). This allowed us to score the number, 
nature and location of changes accumulated owing to the met-2  
set-25 mutation.

We note that the rate and nature of single nucleotide variants 
(SNVs) did not differ between wild-type and met-2 set-25 worms, 
which allowed us to exclude generation time as a confounding factor 
in the analysis (Supplementary Fig. 6a). However, 6 of the 8 met-2 
set-25 sub-strains acquired at least one insertion or deletion (indel) 
(with a total of 9 different observed indels; Supplementary Table 1). 
In contrast, only one wild-type strain incurred small deletions (3-base 
pair (bp) and 5-bp). The average indel in the met-2 set-25 substrains 
covered 5.3 kilobases (kb) (the largest being 33.5 kb), all met-2 set-25  
indels occurred at sites enriched for H3K9me3, and 8 of the 9  
met-2 set-25 indels occurred in REs whose majority showed enhanced 
transcription upon loss of H3K9me.

Confirming the existence of large and stable germline changes, we 
detected a 10-kb inversion flanked on one side by a 1-kb deletion by 
whole genome sequencing and PCR of met-2 set-25 worms that had 
been cultivated for several months. The inversion was immediately 
adjacent to an excised Tc3 transposon, and opposite the inversion was 
a de novo Tc3 transposon insertion unique to the cultivated H3K9me-
deficient strain (Supplementary Fig. 6b−d). The excised Tc3 element 
carried H3K9me3 in the wild-type strain, and was transcriptionally 
activated in met-2 set-25.
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can be reestablished by mutation. (b) To quantify the accumulation of mutations, L1 larvae were released into development for 12 h or 24 h at 20 °C 
before a heat shock and subsequent β-gal staining. (c) ChIP-qPCR monitored enrichment of H3K9me2/H3K9me3 on the reporter array by PCR for 
gfp. H3K9me was recovered on the heterochromatic (high-copy) array but not the euchromatic (low-copy) array. The genomic copy of lmn-1 and Tc4 
served as negative and positive controls. (d) Genomic DNA of the heterochromatic array was isolated from either met-2 set-25, or wt worms grown for 
24 h. Indicated fragments were PCR amplified, subcloned and sequenced by Sanger sequencing. Indels and SNVs that restore the ORF are indicated 
by triangles and dots, respectively in indicated fragments of the construct that were sequenced (N = 3, n = 50). (e) High frequency of LacZ frameshift 
mutations was recovered in the heterochromatic reporter in met-2 set-25 and msh-6 worms, but not in the euchromatic reporter. Results were 
categorized according to the proportion of β-gal positive cells per worm (mean and s.e.m.; N = 3, n = 50). Scale bar, 50 µm. 
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We next checked wild-type and met-2 set-25 genomes for copy 
number variations (CNVs) in repeat families with multiple members.  
Two DNA transposons (HELITRON2 and HELITRONY4) and two 
tandem repeats (MSAT1 and (TATCG)n) showed high CNV uniquely 
in the met-2 set-25 substrains. In contrast, the RNA transposon 
CEREP58 and the single-copy gene lmn-1, like telomeric repeats and 
the rDNA, remained stable (Fig. 6d,e and Supplementary Fig. 6e,f)57. 
RNA transposons, which also failed to accumulate R loops, did not 
show CNV. We conclude that met-2 set-25 germ lines accumulated 
indels at sites bearing H3K9me in wild-type strains as well as changes 
in DNA-transposon and tandem-repeat copy number.

A reporter incurred frequent indels in H3K9me-deficient 
somatic cells
This sequence analysis monitored stable germline changes in the 
worm population, and selected against any mutation that would per-
turb meiotic genome transmission. To visualize the mutation rate in 
somatic cells, we used a heterochromatic reporter with a lacZ gene 
placed out of frame to the ATG start codon, generating multiple pre-
mature stop codons in the first 100 bp of the transcript. Insertions 
or deletions between the ATG and the ORF are necessary to enable 
the translation of the lacZ mRNA into a functional β-galactosidase 
enzyme (Fig. 7a)58. This allowed us to compare mutation rates of 
wild-type and met-2 set-25 worms by microscopy, following a colori-
metric stain for heat-shock-induced β-galactosidase expression. By 
comparing two time points during somatic development (12 h and 
24 h after L1) we could differentiate mutations that might have been 
present in the fertilized egg from mutations incurred during somatic 
development (Fig. 7b). To compare the mutation rate of repetitive het-
erochromatic and unique euchromatic sequences, we made use of the 
observation that transgenes integrated as high–copy number arrays 
induce the formation of H3K9me-containing heterochromatin59  
(i.e., enriched for H3K9me2 and H3K9me3; Fig. 7c). We compared 
this reporter with the same reporter construct integrated as a low–
copy number array, which remains unmethylated and euchromatic. 
We classified phenotypes by the extent of β-galactosidase expression 
on a worm-by-worm basis, and sequenced the constructs amplified 
from worms at the 24-h time point (Fig. 7d,e).

In the wild-type background after 24 h of cultivation, the hete-
rochromatic reporter produced functional β-galactosidase in only 

around 3 ± 2% (s.e.m.) of the worms (Fig. 7e; >1/3 expressing in-frame 
lacZ). In the met-2 set-25 mutant, the fraction of worms expressing 
in-frame lacZ increased to 78 ± 8% (>1/3 staining blue, P = 0.01). In 
contrast, the euchromatic reporter did not express in-frame lacZ in 
met-2 set-25 worms (1 ± 1%, any level of in-frame lacZ). We used a 
mutant of the mismatch repair machinery msh-6 as a positive con-
trol60. The met-2 set-25 mutant primarily showed an increase in the 
β-galactosidase-positive phenotype by 24 h, and not by 12 h, unlike 
the msh-6 mutant (Fig. 7e), suggesting that the met-2 set-25-induced 
mutations occurred during differentiation. The types of mutations 
monitored were confirmed by batch-wise cloning of single reporter 
units and Sanger sequencing. We indeed detected small insertions and 
deletions in the met-2 set-25 worms, enabling in-frame translation 
of β-galactosidase (Fig. 7d). Thus, like the germline changes scored 
by genome sequencing, sequences with H3K9me in wild-type back-
grounds accumulated indels at high rates during somatic cell division 
in H3K9me-deficient worms.

DISCUSSION
H3K9 methylation is the defining histone modification for herit-
ably silent chromatin and is conserved as such from fission yeast to 
humans. C. elegans mutants lacking H3K9me are viable, despite the 
enrichment of H3K9me2/H3K9me3 on silent tissue-specific genes, on 
pseudogenes and on RE. In contrast to the case in other species18,19,61,  
we found no defects in chromosome segregation upon loss of 
H3K9me. However, we observed a temperature-dependent sterility, 
which coincided with an increase in DNA-damage-induced apoptosis 
and stochastic delays in development. Correlating with these pheno-
types, we detected derepression of ~20% RE, from all repeat classes, a 
value that increased at elevated temperatures. Expression of these RE 
was accompanied by the accumulation of RNA:DNA hybrids, CNV 
and a hypersensitivity to replication stress. This correlation suggests 
that it is either the transcription of the repetitive sequence alone, or 
transcription coupled with the inherent pairing nature of repeats, 
that generates insertions and deletions within REs in the absence of 
H3K9me. Of note, DNA transposons and tandem repeats showed 
higher levels of R loops and CNV than RNA transposons, although 
all classes were derepressed upon loss of H3K9me.

The damage incurred in the germ line leads to extensive apop-
tosis and Rad51 focus accumulation, suggesting that these cells 
accumulated double-strand breaks as well as indels. There may be 
additional sources of damage in the germ line, other than those that 
correlate with replication-fork-associated damage, R loops and indels 
scored by genome sequencing. We note that RNA polymerase-DNA  
polymerase collision has been reported to generate fragile sites 
of breakage44,62, which in worm germline cells would provoke an  
apoptotic response32,63.

It is likely that the genomic mutations we detected in the met-2 
set-25 strain arise from replication fork perturbation. This can be 
triggered by enhanced stalling of the replication fork generated by R-
loop formation, which in turn allows hairpin or fold-back structures 
to form in repeats as they are being replicated. Hairpin or fold-back 
structures can also arise from breaks in the single-stranded DNA that 
accumulate either at R loops or behind the fork, owing to perturbed 
coordination between leading- and lagging-strand polymerases  
(Fig. 8). The passage of the replication fork through REs itself can 
lead to hairpin structures41. However, we propose that in met-2 set-25 
cells, unprogrammed transcription of REs enhances R loops, which 
may in turn enhance aberrant structures to such a degree that the 
cellular machineries that normally relieve such stress, can no longer 
cope with their abundance.

Repetitive element

H3K9me

RNAP II

Replication fork

Wild-type

met-2 set-25

Repetitive element

Secondary
structures

RNAP II

Replication fork

R loops

Collision

Figure 8  Transcribed REs in H3K9me-deficient strains can exacerbate 
replication stress provoking genomic instability. A model illustrates 
how the loss of H3K9me could lead to the formation of secondary DNA 
structures that engender replication stress specifically at heterochromatic 
repeats, to perturb genome integrity.
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Unscheduled collisions of the replication and transcription machin-
eries appear to generate breaks as well as other forms of genome insta-
bility42–46,62. Damage is often attributed to the presence of RNA:DNA 
hybrids64–67, yet torsional stress, which can arise from high levels 
of bidirectional transcription68,69, may also contribute to genomic 
instability. We consider it notable not only that the derepression of 
RE generated genomic mutations and R loops, but that both these 
events mapped to REs that are normally marked by H3K9me in wild-
type cells, and which became derepressed in a temperature-enhanced 
manner in the met-2 set-25 mutant. We propose that the crucial role 
of H3K9 methylation in suppressing transcription on a genome-wide 
level is not to program cell differentiation, but to stabilize repetitive 
sequences that accumulate in higher eukaryotic genomes.

Several studies have suggested the use of inhibitors for H3K9me 
HMTs in the treatment of cancer (for example, lung, prostate, hepa-
tocellular and pancreatic cancer)19,61, and preclinical studies have 
been considered promising so far70. These same inhibitors have been 
used to show that hypomethylation of H3K9 increases the rate of 
induced pluripotent stem cell generation15,16. We argue that there 
are clear drawbacks to such therapies, given the genomic instability 
provoked by loss of H3K9me shown here. Whereas mammals addi-
tionally silence through meCpG, it has been documented that DNA 
methylation can be targeted by H3K9me or its HMTs71. Thus, the 
findings presented in this study are likely to have implications for 
protocols that attempt to manipulate the mammalian epigenome.

URLs. http://www.bioconductor.org/packages/3.1/bioc/html/ 
QuasR.html.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. All data from this study have been deposited in the 
Sequence Read Archive (SRA) under accession SRP080806.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
C. elegans cultures and strains. Supplementary Table 2 lists the strains used 
in this study. Strains were made by backcrossing deletion alleles and reporter 
strains obtained from the C. elegans knockout consortium to the GW638 strain 
(met-2(n4256) III; set-25(n5021) III) at least five times. Worms were grown 
at 20 °C, except where specifically indicated.

Immunofluorescence analysis, antibodies and live microscopy, includ-
ing apoptosis assay. IF analysis was carried out as previously described24 
by freeze-cracking and fixation in 1% paraformaldehyde followed by short 
postfixation in methanol (for embryos and gonads72) or methanol followed by 
acetone (for larval stages). Staining was performed in PBS with 0.1% TritonX-
100 and 2% milk powder. For live-cell imaging, larvae were mounted on 
slides coated with 2% agarose. Microscopy was carried out on a spinning disc  
confocal microscope (SD1, W1, Visitron, Puchheim). Stacks of images were 
analyzed using ImageJ.

Antibodies used in this study were mouse anti-H3K9me2, MABI0317 
(MBL73), mouse anti-H3K9me3, MABI0318 (MBL73), mouse anti-RNA:DNA 
hybrid S9.6, hybridoma HB-8730 (ATCC)49, rabbit anti-pan-acetyl H4, 06-866 
(Merck Millipore) and rabbit anti-RAD-51, 29480002 (Novu Biologics).

Developmental timing, progeny size and hatching rate. Worms of indicated 
genotype were synchronized through bleaching and were then singled onto 
plates containing OP50 bacteria. For the developmental timing their stage 
was determined every 24 h. In order to determine the progeny size, adults 
were transferred to fresh plates once a day for three days to keep generations 
separate and their complete progeny size was determined after their hatching 
at the indicated temperature. To determine the hatching rate singled worms 
were transferred every 8 h to freshly seeded plates. The number of laid embryos 
was determined directly after transfer, the number of hatched animals was 
determined on day 3. If not otherwise indicated, worms were grown at the 
experimental temperature (transferred from 20 °C) for at least two generations 
before the experiments.

Chromatin immunoprecipitation experiments. Early embryonic progeny 
was harvested after synchronization (60–65 h depending on each strain) for 
wt and met-2 set-25 mutant strains in two independent biological replicates. 
H3K9me2 and H3K9me3 ChIP was performed as previously described74 using 
the antibodies mentioned above. In brief, 40 µg of chromatin was incubated 
overnight with 3–6 µg of antibody coupled to Dynabeads Sheep Anti-Mouse 
IgG (Invitrogen) or Dynabeads Sheep Anti-Rabbit IgG (Invitrogen), in FA 
buffer (50 mM HEPES/KOH pH 7.5, 1 mM EDTA, 1% Triton X-100, 0.1% 
sodium deoxycholate, 150 mM NaCl)) containing 1% SDS. Chromatin- 
antibody complexes were washed with the following buffers: 3 × 5 min FA 
buffer; 5 min FA buffer with 1 M NaCl; 10 min FA buffer with 500 mM NaCl; 
5min with TEL buffer (0.25 M LiCl, 1% NP-40, 1% sodium deoxycholate,  
1 mM EDTA, 10 mM Tris-HCl, pH 8.0) and twice for 5 min with TE. Complexes  
were eluted at 65 °C in 100 µl of elution buffer (1% SDS in TE with 250 mM 
NaCl) for 15 min. Both input and IP samples were incubated with 20 µg of 
RNAse A for 30 min at 37 °C and 20 µg of proteinase K for 1 h at 55 °C. 
Crosslinks were reversed overnight at 65 °C. DNA was purified using a Zymo 
DNA purification column (Zymo Research).

Library preparation and analysis. Libraries were prepared from chromatin 
IP and genomic DNA samples using the NEBNext ultra DNA library prep kit 
for Illumina (NEB # 7370) and the NEBNext Multiplex Oligos for Illumina 
(NEB # E7335), according to the manufacturer’s recommendations. No size 
selection was performed during sample preparation and the libraries were 
indexed and amplified using 12 PCR cycles, using the recommended condi-
tions. After further purification with Agencourt AmPure XP beads (Beckman 
# A63881), the library size distribution and concentrations were determined 
using a BioAnalyzer 2100 (Agilent technologies) and Qubit (Invitrogen) 
instrument, respectively. The final pools were prepared by mixing equimolar 
amounts of all individually indexed libraries and then sequenced on a HiSeq 
2500 (Illumina) in rapid mode (Paired-End 50). Processing of the LEM-2 
ChIP-seq data, all paired-end ChIP-seq data (2 × 50 bp) were mapped to the 
C. elegans genome (ce6) with the R package QuasR75 using the included aligner 

bowtie76. Definitions of REs were taken from Repbase77. Repeat subfamilies 
were built to allow assignment of multimapping reads to all REs and collapsing 
single elements according to their Repbase ID into families.

Read density along the genome was calculated by tiling the genome into 
200-bp windows (non-overlapping) and counting the number of sequence frag-
ments within each window, using the qCount function of the QuasR package  
(see URLs). To compensate for differences in the read depths of the various  
libraries, we divided each sample by the total number of mapped reads and 
multiplied by the average library size. Log2 expression levels were calculated 
after adding a pseudocount of 1 (y = log2(x + 1)). ChIP-seq signals are dis-
played as average enrichment of IP − input (log2).

RNA expression experiments (RNA-seq and qPCR). For embryos and  
larvae, RNA was isolated by freeze cracking (four times) followed by phenol- 
chloroform extraction and isopropanol precipitation. Total RNA was depleted 
for rRNA using Ribo-Zero Gold kit from Epicentre before library production 
using Total RNA Sequencing ScriptSeq kit. Gonad RNA was extracted from 
50 prepared gonads per replica using the Arcturus pico pure RNA isolation kit 
followed by library production using the Total RNA-seq NuGen Ovation kit. 
50-bp single-end sequencing was done on an Illumina HiSeq 2500. Processing 
of the RNA-seq data, gene and repeat expression levels from RNA-seq data 
were quantified as described previously24 using WormBase (WS190) annota-
tion for coding transcripts and Repbase annotations for REs. Primers used for 
qPCR experiments are listed in Supplementary Table 3.

Mutation sequencing experiments. Worms were grown at 25 °C for 1 month, 
and singled every second generation. Afterward worms were expanded on 
peptone-rich plates (20 cm) per replica and mixed staged worms were har-
vested for genomic DNA isolation. DNA was extracted by a standard protocol 
digesting worms with proteinase K, followed by phenol/chloroform extraction 
and RNAse treatment. 50-bp paired-end sequencing was done on an Illumina 
HiSeq 2500. Reads were mapped to the WS190 genome using BWA78 and 
converted into BAM files using samtools79. Breakpoints were identified with 
Pindel80 and SNVs with samtools.

Southern blot. Southern blot was performed following a standard protocol 
using a digoxigenin-labeled probe produced by PCR with primers listed in 
Supplementary Table 3.

LacZ mutator assay and cloning for somatic mutations. LacZ mutator assay 
was adapted from ref. 58. Worms were synchronized and grown for indicated 
durations on Dh5α containing plates. After a heat shock (heterochromatic 
array: 5 h (2 h at 33 °C, 1 h at 20 °C and 2 h at 33 °C), euchromatic array: 1 h  
20 min (20 min at 33 °C, 10 min at 20 °C, 20 min at 33 °C, 10 min at 20 °C  
and 20 min at 33 °C) and 2 h recovery at 20 °C, worms were stained for  
β-galactosidase expression. To identify somatic mutations the indicated regions 
of the reporter were amplified using a Q5 proofreading polymerase (NEB) and 
primers listed in Supplementary Table 3. PCR products were batch clones 
into pCR2.1-TOPO sequencing vector (Invitrogen) and Sanger sequencing 
was performed on 20 clones per replica and region.

DNA damage sensitivity assays. Assays were previously described81. Recovery 
from an hydroxyurea (HU) pulse was monitored by soaking L1 larvae in M9 
buffer containing indicated concentrations of HU and OP50 bacteria for 16 h 
before washing and plating on fresh OP50 plates. At day 3, the percentage of 
viable adults was quantified. To quantify IR sensitivity worms were irradiated 
(CellRad, Faxitron) at the L1 stage. At day 3, the percentage of viable adults 
was quantified.

R-loop detection. For dot plots, genomic DNA was isolated using phenol-
chloroform extraction followed by ethanol precipitation. DNA concentra-
tions were determined using Nanodrop and the indicated amount of DNA 
was resuspended to a final volume of 50 µl in nuclease-free water after either 
a 1 h incubation with 5 µl of RNase H (NEB; +RNAse H), or a 1 h mock 
incubation at 37 °C, and spotted directly onto a nylon GeneScreen Plus mem-
brane (NEF988; PerkinElmer) using a Bio-Dot Microfiltration Apparatus 
(Bio-Rad). The membrane was UV-crosslinked and blocked with 5% milk in  
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1 × PBS/0.1% Tween-20 before incubation with primary and secondary antibod-
ies. The mouse S9.6 antibody (HB-8730, ATCC, gift of P. Pasero, Montpellier) 
was used at a 1:500 dilution, and a 10,000× dilution of goat anti-mouse HRP 
(Bio-Rad) was used as the secondary. The HRP signal was developed with 
Clarity Western ECL Substrate (Bio-Rad). Imaging was performed using 
ImageQuant LAS4000 mini und analyzed using ImageJ. Immunofluorescence 
staining was performed according to the steps described for the C. elegans 
larval stages using 4XSSC-T (0.1% Tween-20) instead of PBS-T. R loops 
were stained with the S9.6 antibody, diluted 1:100 in SSC-T and 3% BSA  
overnight at 4 °C.

DNA:RNA hybridization. Embryos were lysed by bead beating (MP 
BIOMEDICALS FastPrep-24 5G Instrument) in G2 buffer (80 mM guanidine 
HCl, 30 mM Tris pH 8.0, 30 mM 5% Tween, 0.5% TritonX). Genomic DNA 
was isolated by proteinase K digestion, followed by purification using genomic 
tips (500/G, QIAGEN). DNA was digested over night with AseI and BstUI at  
37 °C (ref. 82). For RNase H control samples, RNase H was added in parallel to 
digestion. 5 µg of digested DNA per IP was incubated with 10 µl of S9.6 anti-
body overnight in binding buffer (10 mM NaPO4, 140 mM NaCl, 0.5% Triton). 
Bound DNA fragments were recovered with 50 µl of Protein-A Dynabeads 
(Invitrogen), followed by four washes with binding buffer and proteinase K 
treatment. Samples were purified using DNA Clean & Concentrator-5 (Zymo 
Research) columns. Samples were sonicated to ~400-bp fragments before 
library preparation, as described above.
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